Theme:
Magnetic Materials-2022
We heartily welcomes you to attend the “10th World Congress on Magnetism and Magnetic Materials" during on May 16-17, 2022 as an online event. The conference will endeavour to offer you networking opportunities, providing with the opportunity to meet and interact with the leading academic scientists, prominent researchers and colleagues as well as sponsors and exhibitors and research scholars to exchange and share their experiences in all aspects of Magnetism.
The theme of the conference is “Presenting Excellence of Magnetism and Electromagnetism by reinventing various Magnetic Materials”. We hope you will join us for a symphony of outstanding science and take a little extra time to enjoy the spectacular and unique beauty of this region.
By receiving howling and wondrous response from the speakers we are pleased to announce that, the world’s largest gathering of professionals, industrialists and students is back again to hit with the 10th World Congress on Magnetism and Magnetic Materials on May 16-17, 2022 an online event to highlight the beauty of magnetism and magnetic material. Magnetic Materials-2022 is a one of a kind live experience that inspires creative professionals, leading industrialists, budding scientists and students to bring their ideas to life and shape the future of the industry. The conference is planned with the motto to get attracted to the world of magnet. The conference will seek to offer networking opportunities, providing you with the opportunity to meet and interact with the leading scientists and researchers, friends and colleagues as well as sponsors and exhibitors. We hope you will join us for a harmony of outstanding science and take a little extra time to enjoy the spectacular and unique beauty of this region.
Target Audience:
- Eminent Scientists from magnetism
- Magnetism Research Professors
- Junior or Senior research fellows, Ph.D. scholars from Universities
- Materials Science Engineering Students
- Directors of companies, industries
- Magnetism associations and many more…
Track 1: Magnetism and Magnetic Materials
Magnetism is the force applied by magnets when they attract or repel with each other. Electrical currents and the magnetic moments of elemental particles give rise to a magnetic field, which acts on other currents and magnetic moments. Magnetic materials are materials studied and used substantially for their magnetic properties. The magnetic response of materials is largely determined by the magnetic dipole moment connected with the natural angular instigation, or spin, of its electrons. A material’s response to an applied magnetic field can be classified as follows:
- Ferromagnetic Materials
- Diamagnetic Materials
- Paramagnetic Materials
Related Associations and Societies: IEEE MAGNETICS SOCIETY | The European Magnetism Association (EMA) | Spanish Club of Magnetism (CEMAG) | International Union of Pure and Applied Physics (IUPAP) | European Materials Research Society (E-MRS) | Institute of Physics Magnetism Group (IOP)
Track 2: Geomagnetism
Geomagnetism is the study of the dynamics of the Earth's magnetic field that is produced in the inner core. The main geomagnetic field of the earth is produced by the field of electrically charged particles within the liquid part of the earth's core. The geomagnetic field is used to explore the dynamics of Earth's inside and its surrounding space environment, and geomagnetic data are used for -
- Geophysical mapping
- Mineral exploration
- Risk mitigation
- Different practical applications
Earth's magnetic field diverts most of the solar radiation, whose charged particles would otherwise strip away the ozone sphere that protects the Earth from harmful ultraviolet radiation. The study of the past magnetic field of the Earth is known as paleomagnetism. The polarity of the Earth's magnetic field is recorded in igneous rocks, and reversals of the sector area unit as detectable as stripes centered on mid-ocean ridges where the sea floor is spreading, while the stability of the geomagnetic poles between reversals has allowed paleomagnetism to trace the past motion of continents. Reversals also give the base for magneto stratigraphy, a way of dating rocks and sediments.
Related Associations and Societies: US Magnetic Materials Association (USMMA) | The European Magnetism Association | The IEEE Magnetics Society; Asian Union of Magnetics Societies | The UK Magnetics Society; Spain Magnetism Club -Club Espanol de Magnetismo (CEMAG) | The Magnetics Society of Japan (MSJ) | Molecular Magnetism Web (MolMag)
Track 3: Nano Magnetism: Nanomaterials & Nanotechnology
Nanomaterials are unit chemical substances or materials that are manufactured and used at a very small scale. Nanomaterials can be classified into four types
- Inorganic-based nanomaterials (Generally, inorganic-based nanomaterials include different metal and metal oxide nanomaterials)
- Carbon-based nanomaterials
- Organic-based nanomaterials
- Composite-based nanomaterials
Nanotechnology is a science, engineering, and technology conducted at the nanoscale, which is about 1 to 100 nanometres. Nano Science and nanotechnology are the study and application of very small things and can be used across all the other scientific fields, like chemistry, biology, physics, materials science, and engineering.
Related Associations and Societies: European Institute of Molecular Magnetism (EIMM) | European Physical Society (EPS) | Japan Society of Applied Physics | Materials Research Society (MRS) | Magnetics Society of India | The Italian Association of Magnetism (AIMagn) | American Physical Society (APS) | American Institute of Physics (AIP)
Track 4: Electromagnetism
Electromagnetism is a branch of Physics which deals with the magnetic attraction force that occurs between electrically charged particles. Electromagnetic force is one of the 4 fundamental forces and exhibits electromagnetic fields such as light, magnetic & electric fields. This is the basic reason electrons bound to the nucleus and responsible for the complete structure of the nucleus. Electromagnets are broadly used as fundamental elements of other electrical devices like motors, generators, mechanical device solenoids, relays, loudspeakers, hard disks, MRI machines, scientific instruments, and magnetic separation equipment.
The other fundamental forces are:
- The strong nuclear force that binds quarks to form nucleons, and binds nucleons to make nuclei
- The weak nuclear force, that binds to all known particles in the Standard Model, and causes certain forms of radioactive decay
- The gravitational force
Related Associations and Societies: Related Associations and Societies: French Society of Physics (SFP) | Chinese Materials Research Society (C-MRS) | Royal Spanish Society of Physics (RSEF) | Association of Asia Pacific Physics Societies | Royal Spanish Society of Physics | Philippines Physics Society | Australian Institute of Physics | IEEE Electromagnetic Compatibility Society
Track 5: Molecular Magnetism
Molecular magnetism is a highly interdisciplinary research field associated with Chemistry, Physics, and Biology. It deals with design, synthesis and physical characterization as well as the theoretical modeling of isolated molecules or gathering of molecules that contain one or more magnetic centers. Molecular magnetism provides an exceptional collection of materials of various magnetic dimensionalities: 0D single-molecule magnets, 1D single-chain magnets, 2D molecular layers and 3D coordination polymers.
The types of magnetisms are as follows:
- Ferrimagnetism
- Anti-ferromagnetism
- Para-magnetism and diamagnetism
Ferromagnetism and ferrimagnetism happened once the magnetic moments in a magnetic material line up spontaneously at a temperature below the Curie temperature, to produce net magnetization.
Related Associations and Societies: The Applied Computational Electromagnetics Society | Danish Association of Magnetism (DMF) | German Physical Society (DPG) | European Institute of Molecular Magnetism (EIMM) | Greater Region Magnetism Network (GRMM) | International Compumag Society
Track 6: Superconductivity
Superconductivity could be a set of physical properties determined in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties could be a superconductor. It is characterised by the Meissner effect, the whole ejection of magnetic flux lines from the inside of the superconductor during its transitions into the superconducting state. Prominent examples of superconductors include
- Aluminium
- Niobium
- Magnesium diboride
- Cuprates
Such as yttrium barium copper oxide and iron pnictides, the most important application for superconductivity is in producing the large-volume, stable, and high-intensity magnetic fields required for MRI, proton magnetic resonance and NMR.
Related Associations and Societies: International Union of Crystallography Commission on Magnetic Structures (IUCr CMS) | International Union of Pure and Applied Physics | The Korean Magnetics Society | Magnetic Microsphere | Magnetic North Canada | Vienna Magnetics Group | Slovak Magnetic Society
Track 7: Materials Science and Engineering
Materials science and engineering, covers the design and finding of new materials, particularly solids Materials. Materials engineers deals with metals, ceramics, and plastics to make new materials. Scientists deal with the connections between the underlying structure of a material, its properties, its process techniques and its performance in applications. Materials engineers develop, process, and check materials accustomed make a variety of product, from computer chips and aircraft wings to golf clubs and medical devices. Materials Science and Engineering combines engineering, physics and chemistry principles to solve real-world problems associated with nanotechnology, biotechnology, information technology, energy, manufacturing and other major engineering disciplines to handle global challenges relevant to technology, society and the environment, including:
- The environment and climate change
- Advanced manufacturing
- Renewable and sustainable energy
- Materials efficiency
- Healthcare
- Biotechnology
- Aerospace and transport
- Communications and information technology
Related Associations and Societies: IEEE MAGNETICS SOCIETY | The European Magnetism Association (EMA) | Spanish Club of Magnetism (CEMAG) | International Union of Pure and Applied Physics (IUPAP) | European Materials Research Society (E-MRS) | Institute of Physics Magnetism Group (IOP)
Track 8: Magnetic Methods
Magnetic method involves the measurement of the earth's magnetic field intensity. Magnetic methods are used to resolve several problems like:
- Mapping the basement surface and sediments in oil/gas exploration
- Detecting various types of ore bodies in mining prospecting
- Detecting metal objects in engineering geophysics
Magnetic surveys record the spatial variation in the Earth's magnetic flux. In marine archaeology, magnetic surveys are often used to detect and map the geology of wreck sites and discover the composition of magnetic materials found on the seafloor. The other types of magnetic fields found in rock include ferromagnetism and remnant magnetism. Ferromagnetism is generated by ferromagnetic materials like the mineral magnetite found in the rocks. Ferromagnetic materials can create their own magnetic field that may not be in line with the Earth's.
- Magnetic Method Applications:
- Unexploded Ordnance (UXO) mapping
- Locating Underground Storage Tanks (UST) and Buried Drums
- Locating Buried Debris and Landfills
- Archaeology
- Mineral Exploration
Related Associations and Societies: International Union of Crystallography Commission on Magnetic Structures (IUCr CMS) | International Union of Pure and Applied Physics | The Korean Magnetics Society | Magnetic Microsphere | Magnetic North Canada | Vienna Magnetics Group | Slovak Magnetic Society
Track 9: Medical Applications of Magnetics
With the evolution of permanent magnets, such as ferrites, Alnicos, and rare earth magnets, attempts have been made to use these materials in medical applications. These medical applications include their use in dentures, maxillofacial operations, orthopaedics, fracture healing, drug delivery systems, and MRI scanners. Magnetic particles have seek to be valuable tools for manipulation of cells or biomolecules, for transportation of chemical substances or transfer of energy to defined target sites in biological systems, and for clinical diagnostics and therapeutics both in vitro as well as in vivo. Despite the recognition of magnetic bracelets, science has largely disproven the effectiveness of such magnets in treating chronic pain, inflammation, disease, and general health deficiencies. Do not use magnets as a relief for proper medical attention, and avoid them if you have a pacemaker or use an insulin pump.
- Medical applications (MRI scanners, Magnet Therapy etc)
- Biological applications (Magneto biology)
- Analytical applications
Related Associations and Societies: The Applied Computational Electromagnetics Society | Danish Association of Magnetism (DMF) | German Physical Society (DPG) | European Institute of Molecular Magnetism (EIMM) | Greater Region Magnetism Network (GRMM) | International Compumag Society
Track 10: Magnetic Fusion
Magnetic fusion is an approach to produce thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of plasma. Fusion reactions combine light atomic nuclei such as hydrogen to form massive ones such as helium, producing energy. Magnetic fusion tries to use the electrical conductivity of the plasma to contain it through interaction with magnetic fields. The magnetic pressure reduces the plasma pressure. The fundamental fusion energy reactions in a laboratory were achieved in 1934 a major breakthrough at the time. There are three states of matter: solid, liquid and gas. If a gas is subjected to very high temperatures, it becomes plasma. In plasma, electrons are rifle from the atoms. An atom with no electrons orbiting around the nucleus is said to be ionized and is called an ion. As a result, plasma is made of ions and free electrons. In this state, scientists can stimulate ions so that they smash into one another, fuse and release energy.
Types of Fusion Reactors are:
- Z-pinch
- Stellarator
- Magnetic mirror
- Tokamak and Inertial confinement
Related Associations and Societies: The Applied Computational Electromagnetics Society | Danish Association of Magnetism (DMF) | German Physical Society (DPG) | European Institute of Molecular Magnetism (EIMM) | Greater Region Magnetism Network (GRMM) | International Compumag Society
Track 11: Applications of Magnetic Materials
Magnetic properties are important in several electronic applications like radiation shielding, sensors, and induction heating. Electromagnets are used as key components of transformers in power supplies that convert electrical energy from a wall outlet into direct current energy for a wide range of electronic devices, and in motors and generators. High field superconducting magnets provide the magnetic flux in MRI devices that are now used extensively in hospitals and medical centers.
- Magnets are used in magnetic compass, doorbells, and refrigerators
- Magnets are used in dynamos, motors, loudspeakers, microphones etc
- Ceramic magnets are used in computers
- Magnets are used in toys to give a magic effect
Related Associations and Societies: European Institute of Molecular Magnetism (EIMM) | European Physical Society (EPS) | Japan Society of Applied Physics | Materials Research Society (MRS) | Magnetics Society of India | The Italian Association of Magnetism (AIMagn) | American Physical Society (APS) | American Institute of Physics (AIP)
Track 12: Spintronic Effects and Devices
Spintronic devices those that exploit the spin of electrons rather than their charge rely on effects that produce, control, and detect spin-polarized currents. Spintronic devices comprise magnetic layers that serve as spin polarizers or analysers isolated by non-magnetic layers through which the spin-polarized electrons are transmitted. It provides a new way to manipulate the magnetization of magnetic nano-structures by a spin-polarized current. Spintronic devices produces high speed, high power lasers, lower threshold current, high-density logic, low power, electronic memory devices and optoelectronic devices. Spintronic systems are most often realised in dilute magnetic semiconductors and Heusler alloys and are of particular interest in the field of quantum computing and neuromorphic computing.
- Magnetic Thermal Annealing
- Magnetron Sputtering Process
Related Associations and Societies: French Society of Physics (SFP) | Chinese Materials Research Society (C-MRS) | Royal Spanish Society of Physics (RSEF) | Association of Asia Pacific Physics Societies | Royal Spanish Society of Physics | Philippines Physics Society | Australian Institute of Physics | IEEE Electromagnetic Compatibility Society
Track 13: Bio and Chemical Magnetism and Magnetic Fluids
Bio-magnetism is the phenomenon of magnetic fields produced by living organisms; it is a subset of bio electromagnetism. In contrast, organism’s use of magnetism in navigation is magnetoception and the study of the magnetic field’s effects on organisms is magneto biology. The fluid dynamics of biological fluids like blood in the presence of static high magnetic fields is investigated. All these magnets are formed by a group of metals called the ferromagnetic metals. These are metals like nickel and iron. Each of these metals has the special property of being able to be magnetized uniformly. Ferro fluid is a liquid that is attracted to the poles of a magnet. This is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic, particles suspended in a carrier fluid. Each magnetic particle is closely coated with a surfactant to inhibit clumping.
- Bio electrochemistry
- Human magnetism
- Magnetocardiography
- Magneto electrochemistry
- Magnetomyography
- Magnetoception
Related Associations and Societies: US Magnetic Materials Association (USMMA) | The European Magnetism Association | The IEEE Magnetics Society; Asian Union of Magnetics Societies | The UK Magnetics Society; Spain Magnetism Club -Club Espanol de Magnetismo (CEMAG) | The Magnetics Society of Japan (MSJ) | Molecular Magnetism Web (MolMag)
Track 14: Hard and Soft Magnetic Materials
Magnetic materials include hard magnets and soft magnets. Hard magnet is also known as permanent magnet, which means a large magnetic field is needed to align the magnetic domains. Soft magnetic materials are easily magnetized and demagnetized. The main difference between hard magnetic materials and soft magnetic materials is that hard magnetic materials have high anisotropy field, high coercivity, large hysteresis loop area, and large magnetic field required for technical magnetization to saturation. Due to the low coercivity of the soft magnetic material, it is easy to demagnetize after the technical magnetization reaches saturation and the external magnetic field is removed, while the hard magnetic material due to the high coercivity, after the technical magnetization to saturation and the magnetic field is removed, it will remain long-term very strong magnetism, so hard magnetic materials are also called constant magnetic materials.
- Hard Magnetic Materials: Conventional metal magnets (such as alnico and alcomax), Ferrites, Cobalt platinum, Rare earth cobalt, Neodymium iron boron
- Soft Magnetic Materials: Iron, iron-silicon alloys, and the nickel-iron alloys
Related Associations and Societies: International Union of Crystallography Commission on Magnetic Structures (IUCr CMS) | International Union of Pure and Applied Physics | The Korean Magnetics Society | Magnetic Microsphere | Magnetic North Canada | Vienna Magnetics Group | Slovak Magnetic Society
Track 15: Theoretical and Computational Magnetism
Theoretical and computational investigation of magnetic phenomena in bulk alloys, hetero-structures and nanoparticles. The development of theoretical and computational magnetism approaches to the properties of magnetic materials and their applications, which include magnetic recording and an expanding interest in bio-magnetism. Organic materials with extraordinary magnetic properties promise a wide range of light, flexible, and inexpensive alternatives to familiar metal-based magnets. Individual organic molecules with high magnetic moments will be the foundation for design and fabrication of these materials.
Related Associations and Societies: US Magnetic Materials Association (USMMA) | The European Magnetism Association | The IEEE Magnetics Society; Asian Union of Magnetics Societies | The UK Magnetics Society; Spain Magnetism Club -Club Espanol de Magnetismo (CEMAG) | The Magnetics Society of Japan (MSJ) | Molecular Magnetism Web (MolMag)
The world magnetic materials market has been projected to expand at a considerable CAGR during the forecast period. This growth is assign to the growing automotive industry, rising demand in end-use industries, and development and modernization of infrastructures.
The increasing trend of modernization and electrification to enhance efficiencies and reduce the cost of production enhances the utilization of permanent magnets in various industries. The building technologies offer newly advanced solutions that ensure the peak levels of sustainability, energy efficiency and also safety. These not only offer industry-specific solutions for data centers, hospitals, life science companies, hotels, airports, and utility companies, but also offer solutions for commercial buildings of international companies as well as cities and their infrastructures. The market size of magnetic materials is estimated to have been USD 55.52 billion in 2014, and it is projected to reach USD 96.00 billion by 2020, at a CAGR of 9.6% between 2015 and 2020. Semi-hard magnet is projected to play a key role in fueling the growth of the overall magnetic materials market owing to its unique properties, making it suitable for use in various automotive, industrial, power generations, electronics, and other applications.
- The target audiences for the magnetic materials market report are as follows
- Magnetic material manufacturers
- Magnetic material suppliers
- Magnetic material formulators
- Raw material suppliers
- Service providers
- End users, such as automobile, electronic, power generation, and other manufacturing companies
Conference Highlights
- Magnetism and Magnetic Materials
- Geomagnetism
- Nano Magnetism: Nanomaterials & Nanotechnology
- Electromagnetism
- Molecular Magnetism
- Superconductivity
- Materials Science and Engineering
- Magnetic Methods
- Medical Applications of Magnetics
- Magnetic Fusion
- Applications of Magnetic Materials
- Spintronic Effects and Devices
- Bio and Chemical Magnetism and Magnetic Fluids
- Hard and Soft Magnetic Materials
- Theoretical and Computational Magnetism
To share your views and research, please click here to register for the Conference.
To Collaborate Scientific Professionals around the World
Conference Date | May 16-17, 2022 | ||
Sponsors & Exhibitors |
|
||
Speaker Opportunity Closed | |||
Poster Opportunity Closed | Click Here to View |
Useful Links
Special Issues
All accepted abstracts will be published in respective Our International Journals.
- Journal of Geology & Geophysics
- Journal of Geography & Natural Disasters
- Journal of Oceanography and Marine Research
Abstracts will be provided with Digital Object Identifier by